Приложение к ООП ООО

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РЕСПУБЛИКИ КРЫМ «ЛИВАДИЙСКАЯ САНАТОРНАЯ ШКОЛА-ИНТЕРНАТ»

РАССМОТРЕНО И

ПРИНЯТО

на заседании МО

Протокол № 🧲

от «<u>28</u> » <u>августа 2020</u> Руководитель МО <u>М</u> СОГЛАСОВАНО

Зам. директора по УВР

_ В.П. цема

УТВЕРЖДАЮ

Директор 0

М.И. Дорогина

Приказ №

OT « My the leges 20201

РАБОЧАЯ ПРОГРАММА

по химии

ОСНОВНОЕ ОБЩЕЕ ОБРАЗОВАНИЕ

9 КЛАСС

Учитель: Гарбуз Татьяна Ивановна

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по химии рассчитана на обучающихся 9 класса ГБОУ РК «Ливадийская санаторная школа-интернат».

Рабочая программа по химии для 9 класса составлена на основе следующих документов:

- 1. Федеральный закон от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации»
- 2. Федеральный государственный образовательный стандарт основного общего образования.
- 3. Авторская программа: Химия. Рабочие программы. Предметная линия учебников Г. Е. Рудзитиса, Ф. Г. Фельдмана. 8—9 классы: пособие для учителей общеобразовательных организаций / Н. Н. Гара. 2-е изд., доп. М.: Просвещение, 2013. 48 с.

Рабочая программа раскрывает содержание обучения химии в 9 классе общеобразовательных учреждений. Она рассчитана на 68 ч в год (2 ч в неделю)

Одной из важнейших задач основного общего образования является подготовка обучающихся к осознанному и ответственному выбору жизненного и профессионального пути. Обучающиеся должны научиться самостоятельно ставить цели и определять пути их достижения, использовать приобретённый в школе опыт в реальной жизни, за рамками учебного процесса.

Химия как учебный предмет вносит существенный вклад в воспитание и развитие обучающихся: она призвана вооружить их основами химических знаний, необходимых для повседневной жизни, заложить фундамент для дальнейшего совершенствования этих знаний, а также способствовать безопасному поведению в окружающей среде и бережному отношению к ней.

Изучение химии в основной школе направлено: на освоение важнейших знаний об основных понятиях и законах химии, химической символике; на овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчёты на основе химических формул веществ и уравнений химических реакций; на развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями; на воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры; на применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА Личностные результаты освоения предмета химии:

- 1) формирование ответственного отношения к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- 2 формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 3) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-

исследовательской, творческой и других видах деятельности;

- 4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- 5) формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культуре, языку, гражданской позиции; готовности и способности вести диалог с другими людьми и достигать в нём взаимопонимания;
- 6) формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- 7) формирование основ экологической культуры соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

Метапредметные результаты освоения предмета химии:

- 1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- 2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 4) умение оценивать правильность выполнения учебной задачи, собственные возможности её решения;
- 5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- 6) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение и делать выводы;
- 7) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
 - 8) смысловое чтение;
- 9) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;
- 10) умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью;
- 11) формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ– компетенции);
 - 12) формирование и развитие экологического мышления, умение применять его в

познавательной, коммуникативной, социальной практике и профессиональной ориентации.

Предметные результаты освоения предмета химии:

- 1) формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;
- 2) осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- 3) овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сбережения здоровья и окружающей среды;
- 4) формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- 5) приобретение опыта использования различных методов изучения веществ; наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов;
- 6) умение оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием;
- 7) владение приёмами работы с информацией химического содержания, представленной в разной форме (в виде текста, формул, графиков, табличных данных, схем, фотографий и др.);
- 8) создание основы для формирования интереса к расширению и углублению химических знаний и выбора химии как профильного предмета при переходе на ступень среднего (полного) общего образования, а в дальнейшем и в качестве сферы своей профессиональной деятельности;
- 9) формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф.

В результате изучения тем: «Классификация химических реакций. Химические реакции в водных растворах»

Выпускник научится:

- объяснять суть химических процессов и их принципиальное отличие от физических;
- называть признаки и условия протекания химических реакций;
- устанавливать принадлежность химической реакции к определённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительно-восстановительные); 4) по обратимости процесса (реакции обратимые и необратимые);
- называть факторы, влияющие на скорость химических реакций;
- называть факторы, влияющие на смещение химического равновесия;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и

сокращённые ионные уравнения реакций обмена; уравнения окислительновосстановительных реакций;

- прогнозировать продукты химических реакций по формулам/названиям исходных веществ; определять исходные вещества по формулам/названиям продуктов реакции;
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- приготовлять растворы с определённой массовой долей растворённого вещества;
- определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
- проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных катионов и анионов.

Выпускник получит возможность научиться:

- составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;
- прогнозировать результаты воздействия различных факторов на изменение скорости химической реакции;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия.

В результате изучения тем «Неметаллы (галогены, кислород и сера, азот и фосфор, углерод и кремний). Металлы.»

Выпускник научится:

- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
- составлять формулы веществ по их названиям;
- определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей;
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
- составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;

• проводить лабораторные опыты по получению и собиранию газообразных веществ: водорода, кислорода, углекислого газа, аммиака; составлять уравнения соответствующих реакций.

Выпускник получит возможность научиться:

- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль;
- характеризовать особые свойства концентрированных серной и азотной кислот;
- приводить примеры уравнений реакций, лежащих в основе промышленных способов получения аммиака, серной кислоты, чугуна и стали;
- описывать физические и химические процессы, являющиеся частью круговорота веществ в природе;
- организовывать, проводить ученические проекты по исследованию свойств веществ, имеющих важное практическое значение.

В результате изучения темы «Первоначальные представления об органических веществах»

Выпускник научится:

- составлять формулы органических веществ и давать им названия;
- называть физические и химические свойства отдельных органических веществ;
- называть области применения органических веществ.

Выпускник получит возможность научиться:

- прогнозировать химические свойства органических веществ на основе их состава и строения;
- описывать физические и химические процессы, происходящие в природе с органическими веществами.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Тема 1: Классификация химических реакций

Классификация химических реакций: реакции соединения, разложения, замещения, обмена. Окислительно-восстановительные реакции. Окислитель, восстановитель, процессы окисления и восстановления. Составление уравнений окислительно-восстановительных реакций с помощью метода электронного баланса.

Тепловые эффекты химических реакций. Экзотермические и эндотермические реакции.

Скорость химических реакций. Факторы, влияющие на скорость химических реакций. Первоначальное представление о катализе.

Обратимые реакции. Понятие о химическом равновесии.

Тема 2: Химические реакции в водных растворах

Химические реакции в водных растворах. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Электролитическая диссоциация кислот, оснований и солей. Слабые и сильные электролиты. Степень диссоциации. Реакции ионного обмена. Условия течения реакций ионного обмена до конца. Химические свойства основных классов неорганических соединений в свете представлений об электролитической диссоциации и окислительновосстановительных реакциях.

Тема 3: Галогены.

Неметаллы. Галогены. Положение в периодической системе химических элементов, строение их атомов. Нахождение в природе. Физические и химические свойства галогенов.

Сравнительная характеристика галогенов. Получение и применение галогенов. Хлор. Физические и химические свойства хлора. Применение хлора. Хлороводород. Физические свойства. Получение. Соляная кислота и сё соли. Качественная реакция на хлорид-ионы. *Тема 4: Кислород и сера.*

Кислород и сера. Положение в периодической системе химических элементов, строение их атомов. Сера. Аллотропия серы. Физические и химические свойства. Нахождение в природе. Применение серы. Сероводород. Сероводородная кислота и её соли. Качественная реакция на сульфид-ионы. Оксид серы(IV). Физические и химические свойства. Применение. Сернистая кислота и её соли. Качественная реакция на сульфитионы. Оксид серы(VI). Серная кислота. Химические свойства разбавленной и концентрированной серной кислоты. Качественная реакция на сульфат- ионы. Химические реакции, лежащие в основе получения серной кислоты в промышленности. Применение серной кислоты.

Тема 5: Азот и фосфор.

Азот и фосфор. Положение в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение. Круговорот азота в природе. Аммиак. Физические и химические свойства аммиака, получение, применение. Соли аммония. Азотная кислота и её свойства. Окислительные свойства азотной кислоты. Получение азотной кислоты в лаборатории. Химические реакции, лежащие в основе получения азотной кислоты в промышленности. Применение азотной кислоты. Соли азотной кислоты и их применение. Азотные удобрения. Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора. Оксид фосфора(V). Фосфорная кислота и её соли. Фосфорные удобрения.

Тема 6: Углерод и кремний.

Углерод и кремний. Положение в периодической системе химических элементов, строение их атомов. Углерод. Аллотропия углерода. Физические и химические свойства углерода. Адсорбция. Угарный газ, свойства и физиологическое действие на организм. Углекислый газ. Угольная кислота и её соли. Качественная реакция на карбонат-ионы. Круговорот углерода в природе. Органические соединения углерода. Кремний. Оксид кремния(IV). Кремниевая кислота и её соли. Стекло. *Цемент*.

Металлы. Положение металлов в периодической системе химических элементов, строение их атомов. Металлическая связь. Физические свойства металлов. Ряд активности металлов (электрохимический ряд напряжений металлов). Химические свойства металлов. Общие способы получения металлов. Сплавы металлов.

Тема 7: Металлы.

Щелочные металлы. Положение щелочных металлов в периодической системе, строение их атомов. Нахождение в природе. Физические и химические свойства щелочных металлов. Применение щелочных металлов и их соединений.

Щелочноземельные металлы. Положение щелочноземельных металлов в периодической системе, строение их атомов. Нахождение в природе. Магний и кальций, их важнейшие соединения. Жёсткость воды и способы её устранения.

Алюминий. Положение алюминия в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства алюминия. Применение алюминия. Амфотерность оксида и гидроксида алюминия.

Железо. Положение железа в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства железа. Важнейшие соединения железа: оксиды, гидроксиды и соли железа(II) и железа(III). Качественные реакции на ионы

 Fe^{2+} и Fe^{3+} .

Тема 8: Первоначальные представления об органических веществах.

Предмет органической химии. Неорганические и органические соединения. Углерод — основа жизни на Земле. Особенности строения атома углерода в органических соединениях.

Углеводороды. Предельные (насыщенные) углеводороды. Метан, этан, пропан — простейшие представители предельных углеводородов. Структурные формулы углеводородов. Гомологический ряд предельных углеводородов. Гомологи. Физические и химические свойства предельных углеводородов. Реакции горения и замещения. Нахождение в природе предельных углеводородов. Применение метана.

Непредельные (ненасыщенные) углеводороды. Этиленовый рад непредельных углеводородов. Этилен. Физические и химические свойства этилена. Реакция присоединения. Качественные реакции на этилен. Реакция полимеризации. Полиэтилен. Применение этилена.

Ацетиленовый ряд непредельных углеводородов. Ацетилен. Свойства ацетилена. Применение ацетилена.

Производные углеводородов. Краткий обзор органических соединений: одноатомные спирты (метанол, этанол), многоатомные спирты (этиленгликоль, глицерин), карбоновые кислоты (муравьиная, уксусная), сложные эфиры, жиры, углеводы (глюкоза, сахароза, крахмал, целлюлоза), аминокислоты, белки. Роль белков в организме.

Понятие о высокомолекулярных веществах. Структура полимеров: мономер, полимер, структурное звено, степень полимеризации. Полиэтилен, полипропилен, поливинилхлорид.

Химический эксперимент является обязательной составной частью каждого из разделов программы.

Разделение лабораторного эксперимента следующее:

Практические работы:

- 1. Изучение влияния условий протекания химической реакции на ее скорость.
- 2. Решение экспериментальных задач по теме «Свойства кислот, оснований и солей как электролитов».
- 3. Получение соляной кислоты и изучение ее свойств.
- 4. Решение экспериментальных задач по теме «Кислород и сера».
- 5. Получение аммиака и изучение его свойств.
- 6. Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов.
- 7. Решение экспериментальных задач по теме «Металлы и их соединения».

Лабораторные опыты:

- 1. Реакции между растворами электролитов
- 2. Вытеснение галогенами друг друга из растворов соединений.
- 3. Ознакомление с образцами серы и её природных соединений.
- 4. Качественная реакция на сульфид-ионы.
- 5. Качественная реакция на сульфит-ионы.
- 6. Распознавание сульфат-ионы в растворе.
- 7. .Взаимодействие солей аммония со щелочами. Качественная реакция на ионы аммония
- 8. Качественная реакция на углекислый газ.
- 9. Качественная реакция на карбонат-ион.
- 10. Изучение образцов металлов.
- 11. Взаимодействие металлов с растворами солей.
- 12. Ознакомление со свойствами и превращениями карбонатов и гидрокарбонатов.

- 13.Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами.
- 14. Качественные реакции на ионы Fe^{2+} и Fe^{3+}

Демонстрации:

- 1. Примеры экзо- и эндотермических реакций.
- 2. Физические свойства галогенов.
- 3. Аллотропные модификации серы.
- 4. Образцы природных сульфидов и сульфатов.
- 5.. Образцы природных нитратов и фосфатов
- 6. Модели кристаллических решёток алмаза и графита.
- 7. Образцы природных карбонатов и силикатов.
- 8.Образцы важнейших соединений натрия, калия, природных соединений магния, кальция, алюминия, руд железа.
- 9.Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой.
- 10. Модели молекул органических соединений.
- 11. Горение углеводородов и обнаружение продуктов их горения.
- 12. Образцы изделий из полиэтилена, полипропилена

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

No	Название раздела и темы	Учебные	Контрольные	Практические
раздела		часы	работы	работы
	Повторение основных вопросов	4		
	курса химии 8 класса			
1	Классификация химических	5		1
	реакций			
2	Химические реакции в водных	7	1	1
	растворах			
3	Неметаллы. Галогены	5		1
4	Кислород и сера	9	1	1
5	Азот и фосфор	8		1
6	Углерод и кремний	9	1	1
7	Металлы	13	1	1
8	Первоначальные представления	8		
	об органических веществ.			
		68	4	7