Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа с.Гаровка-2 Хабаровского муниципального района Хабаровского края

СОГЛАСОВАНО

Заместитель директора по УВР

«30» 08 2019

— УЛ.А.Стригова

УТВЕРЖДЕНА

Приказом № 59 от « 3/ » оф. 2019

директор

/И.В.Белашова

РАБОЧАЯ ПРОГРАММА

элективного курса по физике в 10-11 классах теме: "Методы решения физических задач" на 2019 -2020 учебный год

Составитель:

Л.А.Касаева,

1 квалификационная

категория

2019-2020 уч.год

Пояснительная записка к элективному курсу «Методы решение физических задач»

Одно из труднейших звеньев учебного процесса – научить учащихся решать задачи. Физическая задача – это ситуация, требующая от учащихся мыслительных и практических действий на основе законов и методов физики, направленных на овладение знаниями по физике и на развитие мышления. Хотя способы решения традиционных задач хорошо известны (логический (математический), экспериментальный), но организация деятельности учащихся по решению задач является одним из условий обеспечения глубоких и прочных знаний у учащихся. Сегодня знания учащихся по физике явно демонстрируют все большую дифференциацию выпускников по качеству подготовки. Прослеживается тенденция явного роста качества подготовки сильной группы учащихся и все большее отставание от них групп выпускников с удовлетворительным и неудовлетворительным уровнями подготовки. Причем ранее это отставание определялось в основном как качественный показатель, т.е. слабые учащиеся делали больше вычислительных ошибок, не могли довести до конца решение. Постепенно картина меняется в сторону количественных показателей, выделяются целые темы и элементы содержания, которые «выпадают» из поля зрения всей этой группы выпускников, они начинают отставать не только по качеству подготовки, но и по объему знаний.

По физике выбор базового уровня с учебной нагрузкой в два недельных часа, что означает точное следование базовому стандарту предмета: познакомить учащихся с предусмотренным спектром физических явлений, обеспечить общекультурную подготовку в этой области знаний. Но при этом невозможно изучить все законы, необходимые для объяснения физических явлений, а, следовательно, невозможно обеспечить формирование умения решать задачи по физике (что базовый уровень стандарта и не предусматривает). Поэтому элективные курсы по решению физических задач в первую очередь призваны развивать содержание базового курса физики, и в непрофильных классах у учащихся появляется реальная возможность при наличии данного элективного курса получить подготовку, соответствующую профильному уровню изучения предмета, и подготовиться к сдаче ЕГЭ.

Элективный курс «Решение физических задач» рассчитан на учащихся 10-11 классов общеобразовательных учреждений универсального профиля, где физика преподается по базовому уровню. Программа составлена на основе программ:

- 1. В. Л. Орлов, Ю. А. Сауров, «Методы решения физических задач», М., Дрофа, 2005 год.
- 2. Н. И. Зорин. Элективный курс «Методы решения физических задач: 10-11 классы», М., ВАКО, 2007 год (мастерская учителя).

Настоящий элективный курс рассчитан на преподавание в объеме 68 часов (1 час в неделю на два года обучения 10-11 классы). Цель данного курса углубить и систематизировать знания учащихся 10-11 классов по физике путем решения разнообразных задач и способствовать их профессиональному определению.

Его основная направленность - подготовить учащихся к ЕГЭ с опорой на знания и умения учащихся, приобретенные при изучении физики в 7-9 классах, а также углублению знаний

по темам при изучении курса физики в 10-11 классах. Занятия проводится 1 час в неделю в течение 4 полугодий (на два года обучения).

Цели элективного курса:

- 1. развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
- 2. совершенствование полученных в основном курсе знаний и умений;
- 3. формирование представителей о постановке, классификаций, приемах и методах решения физических задач;
- 4. применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.

Задачи курса:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

Программа элективного курса составлена с учетом государственного образовательного стандарта и содержанием основных программ курса физики базовой и профильной школы. Она ориентирует учителя на дальнейшее совершенствование уже усвоенных учащимися знаний и умений. Для этого вся программа делится на несколько разделов. В программе выделены основные разделы школьного курса физики, в начале изучения которых с учащимися повторяются основные законы и формулы данного раздела. При подборе задач по каждому разделу можно использовать вычислительные, качественные, графические, экспериментальные задачи.

В начале изучения курса дается два урока, целью которых является знакомство учащихся с понятием «задача», их классификацией и основными способами решения. Большое значение дается алгоритму, который формирует мыслительные операции: анализ условия задачи, догадка, проект решения, выдвижение гипотезы (решение), вывод.

В 10 классе при решении задач особое внимание уделяется последовательности действий, анализу физического явления, проговариванию вслух решения, анализу полученного ответа. Если в начале раздела для иллюстрации используются задачи из механики, молекулярной физики, электродинамики, то в дальнейшем решаются задачи из разделов курса физики 11 класса. При повторении обобщаются, систематизируются как теоретический материал, так и приемы решения задач, принимаются во внимание цели повторения при подготовке к единому государственному экзамену. При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на

формирование умений решать задачи, на накопление опыта решения задач различной трудности. В конце изучения основных тем («Кинематика и динамика», «Молекулярная физика», «Электродинамика») проводятся итоговые занятия в форме проверочных работ, задания которых составлены на основе открытых баз ЕГЭ по физике части «В» и части «С». Работы рассчитаны на два часа, содержат от 5 до 10 задач, два варианта. После изучения небольших тем («Законы сохранения. Гидростатика», «Основы термодинамики», «Волновые и квантовые свойства света») проводятся занятия в форме тестовой работы на 1 час, содержащей задания из ЕГЭ (часть «А» и часть «В»).

Содержание программы

10 КЛАСС. МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА – 34 часа

1. Правила и примы решения физических задач (2 часа)

Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видоОбщие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.

2. Кинематика (4 часа)

Равномерное движение. Средняя скорость (2 часа). Прямолинейное равномерное движение и его характеристики: перемещение, путь. Графическое представление движения РД. Графический и координатный способы решения задач на РД. Алгоритм решения задач на расчет средней скорости движения.

Одномерное равнопеременное движение (2 часа). Ускорение. Равнопеременное движение: движение при разгоне и торможении. Перемещение при равноускоренном движении. Графическое представление РУД. Графический и координатный способы решения задач на РУД.

3. Динамика и статика (13 часов)

Решение задач на основы динамики (4 часа). Решение задач по алгоритму

на законы Ньютона с различными силами (силы упругости, трения, сопротивления). Координатный метод решения задач по динамике по алгоритму: наклонная плоскость, вес тела, задачи с блоками и на связанные тела.

Движение под действием силы всемирного тяготения (5 часов). Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх, движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.

Движение материальной точки по окружности. Период обращения и частота обращения. Циклическая частота. Угловая скорость. Центростремительное ускорение. Космические скорости. Решение астрономических задач на движение планет и спутников. Условия равновесия тел (2 часа). Условия равновесия тел. Момент силы. Центр тяжести тела. Задачи на определение характеристик равновесия физических систем и алгоритм их решения.

Проверочная работа по теме «Кинематика и динамика» - 2 часа.

4. Законы сохранения (9 часов)

Импульс. Закон сохранения импульса (2 часа). Импульс тела и импульс силы. Решение задач на второй закон Ньютона в импульсной форме. Замкнутые системы. Абсолютно упругое и неупругое столкновения. Алгоритм решение задач на сохранение импульса и реактивное движение.

Работа и энергия в механике. Закон изменения и сохранения механической энергии (4 часа). Энергетический алгоритм решения задач на работу и мощность. Потенциальная и кинетическая энергия. Полная механическая энергия. Алгоритм решения задач на закон сохранения и превращение механической энергии несколькими способами. Решение задач на использование законов сохранения.

Гидростатика (2 часа). Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Решение задач динамическим способом на плавание тел.

Тестирование по теме «Законы сохранения. Гидростатика» - 1час.

5. Молекулярная физика (6 часов)

Строение и свойства газов, жидкостей и твёрдых тел (5 часов). Решение задач на основные характеристики молекул на основе знаний по химии и физики. Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Графическое решение задач на изопроцессы.

Алгоритм решения задач на определение характеристик влажности воздуха. Решение задач на определение характеристик твёрдого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Проверочная работа по теме «Молекулярная физика» - 1 час.

Календарно-тематическое планирование.

Элективный курс. 10 класс

Nº - ′-	Коли	Тема занятия	Дата	
п/п	чест		прове	
	во часо		план	факт
	В			
	I.			
		Правила и приемы решения физических задач (2часа	a)	
1	1	Что такое физическая задача? Состав физической задачи.		
		Классификация физических задач.		
_	1	05 n		
2	1	Общие требования. Этапы решения задач. Различные		
		приемы и способы решения: геометрические приемы, алгоритмы, аналогии.		
		Кинематика (4часа)		
3 1 Прямолинейное равномерное движение. Графическое				
	_	представление движения и решение задач на РД		
		различными способами (координатный и графический).		
4	1	Решение задач на среднюю скорость и алгоритм.		
		Графический способ решения задач на среднюю скорость.		
	1	V P		
5	1	Ускорение. Равнопеременное движение: движение при		
		разгоне и торможении. Перемещение при равноускоренном движении.		
6	1	Графическое представление РУД. Графический и		
U	1	координатный методы решения задач на РУД.		
		Графический способ решения задач на среднюю скорость		
		при РУД.		
			•	
		Динамика и статика (13часов)		
7	1	Решение задач на законы Ньютона по алгоритму.		
8	1	Координатный метод решения задач: движение тел по		
		наклонной плоскости.		
9	1	Координатный метод решения задач: вес движущегося		
4.0		тела		
10	1	Координатный метод решения задач: движение связанных		
11	1	тел и с блоками.		
11	1	Решение задач на законы для сил тяготения: свободное		
12	2	падение; движение тела, брошенного вертикально вверх.		
12- 13		Движение тела, брошенного под углом к горизонту, и движение тела, брошенного горизонтально: определение		
13		дальности, времени полета, максимальной высота		
		подъема.		
	1		L	1

14	1	Характеристики движения тел по окружности: угловая	
		скорость, циклическая частота, центростремительное	
		ускорение, период и частота обращения.	
15	1	Движение в поле гравитации и решение астрономических	
		задач. Космические скорости и их вычисление.	
16	1	Центр тяжести. Условия и виды равновесия. Момент силы.	
		Определение центра масс и алгоритм решения задач на его	
		нахождение.	
17	1	Решение задач на определение характеристик равновесия	
		физической системы по алгоритму	
18-	2	Проверочная работа по кинематике и динамике. Анализ	
19		работы и разбор наиболее трудных задач.	
		Законы сохранения (9часов)	
20	1	II N II	
20	1	Импульс силы. Решение задач на второй закон Ньютона в	
		импульсной форме. Алгоритм решения задач на абсолютно	
21	4	упругий и абсолютно неупругий.	
21	1	Решение задач на закон сохранения импульса и реактивное	
		движение. Алгоритм решения задач на абсолютно упругий	
		и абсолютно неупругий.	
22	1	Работа и мощность. КПД механизмов. Динамический и	
		энергетический методы решение задач на определение	
		работы и мощности.	
23	1	Потенциальная и кинетическая энергия. Решение задач на	
		закон сохранения и превращения энергии.	
24-	2	Решение задач средствами кинематики, динамики, с	
25		помощью законов сохранения.	
26	1	Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес	
		тела в жидкости. Условия плавания тел. Воздухоплавание.	
27	1	Решение задач на гидростатику с элементами статики	
		динамическим способом.	
28	1	Тестовая работа по теме «Законы сохранения.	
		Гидростатика».	
		Молекулярная физика (6часов)	
29	1	Решение задач на основные характеристики частиц (масса,	
		размер, скорость). Решение задач на основное уравнение	
		МКТ и его следствия.	
30	1	Решение задач на характеристики состояния газа в	
		изопроцессах. Графические задачи на изопроцессы.	
31	1	Решение задач на свойство паров и характеристик	
		влажности воздуха.	
32	1	Решение задач на определение характеристик	
		твердого тела: закон Гука в двух формах, графические	
		задачи на закон Гука	
33-	2	Проверочная работа на основы МКТ. Анализ теста по	
34		законам сохранения и разбор наиболее трудных задач по	
		основам МКТ.	
		<u> </u>	

Календарно-тематическое планирование. 11 класс

No	Количество часов	Тема занятия	Да	Дата	
п/п			проведения		
			план	факт	
	T	Основы термодинамики (5часов)	T		
1	1	Внутренняя энергия, работа и количество теплоты. Решение задач.	9.09		
2	1	Алгоритм и решение задач на уравнение теплового баланса.	16.09		
3	1	Первый закон термодинамики. Адиабатный процесс. Решение количественных графических задач на вычисление работы, количество теплоты, изменения внутренней энергии.	23.09		
4	1	Тепловые двигатели. Расчет КПД тепловых установок. Графический способ решения задач на 1 и 2 законы термодинамики.	30.09		
5	1	Тестовая работа на основные законы термодинамики.	7.10		
		Электродинамика (20часов)			
6	1	Закон сохранения электрического заряда. Закон Кулона. Решение задач по алгоритму на сложение электрических сил с учетом закона Кулона в вакууме и среде.	14.10		
7	1	Решение задач на принцип суперпозиции полей (напряженность, потенциал). Решение задач по алгоритму на сложение полей.	21.10		
8	1	Решение задач на напряженность и напряжение энергетическим методом.	28.10		
9	1	Электроемкость плоского конденсатора. Решение задач на описание систем конденсаторов. Энергия электрического поля.	11.11		
10- 11	2	Задачи разных видов на описание магнитного поля тока и его действия: вектор магнитной индукции и магнитный поток, сила Ампера и сила Лоренца. Движение заряженных частиц в магнитных и электромагнитных полях (алгоритм решения задач).	18.11 25.11		
12	1	Законы последовательного и параллельного соединений. Задачи на различные приемы расчета сопротивления сложных электрических цепей	2.12		

		(смешанных).	
13-	2	Задачи разных видов на описание электрических	9.12
14		цепей постоянного электрического тока с помощью	16.12
		закона Ома для замкнутой цепи	
15	1	Задачи разных видов на описание электрических	13.01
		цепей постоянного электрического тока с помощью	
		закона Джоуля — Ленца, расчет КПД	
		электроустановок.	
16	1	Электрический ток в металлах. Зависимость	20.01
		сопротивления проводника от температуры.	
		Решение задач на ток в металлах.	
17	1	Электролиты и законы электролиза. Решение задач	27.01
		на законы электролиза.	
18	1	Электрический ток в вакууме и газах. Движение	3.02
		зараженных частиц в электрических и	
- 10		электромагнитных полях.	10.02
19	1	Задачи разных видов на описание явления	10.02
		электромагнитной индукции и самоиндукции:	
		закон электромагнитной индукции, правило Ленца,	
20-	2	индуктивность. Решение графических задач.	17.02
20-	2	Уравнение гармонического колебания и его решение для электромагнитных колебаний.	2.03
41		Решение задач на гармонические колебания	2.03
		(механические и электромагнитные) и их	
		характеристики разными методами (числовой,	
		графический, энергетический).	
22	1	Переменный электрический ток: метод векторных	9.03
	_	диаграмм. Решение задач на расчет электрический	7.02
		цепей по переменному току.	
23-	2	Проверочная работа по электродинамике. Анализ и	16.03
24		разбор наиболее трудных задач по	30.03
		электродинамике.	
		Волновые и квантовые свойства (7часов)	
25	1	Задачи на описание различных свойств	6.04
		электромагнитных волн: скорость, отражение,	
		преломление.	
26	1	Задачи по геометрической оптике: зеркала, призмы,	13.04
	_	линзы, оптические схемы.	
27	1	Задачи на описание различных свойств	20.04
		электромагнитных волн: интерференция,	
20		дифракция, поляризация, дисперсия.	25.04
28	1	Классификация задач по СТО и примеры их	27.04
20	1	решения.	4.05
29	1	Квантовые свойства света. Решение задач на	4.05
20	1	фотоэффект и характеристики фотона.	11.05
30	1	Состав атома и ядра. Ядерные реакции. Решение	11.05
		задач на атомную и ядерную физику. Алгоритм	
		решения задач на расчет дефекта масс и энергетический выход реакций, закон	
		радиоактивного распада.	
31	1	Тестовая работа на волновые и квантовые свойства	18.05
31	_	света.	10.05
	<u> </u>	ODOTA.	

32- 33	2	Итоговая работа с элементами ЕГЭ (2 часа)	25.05	
34	1	Анализ работы и разбор наиболее трудных задач.		